Weakly-Supervised Acquisition of Labeled Class Instances using Graph Random Walks
نویسندگان
چکیده
We present a graph-based semi-supervised label propagation algorithm for acquiring opendomain labeled classes and their instances from a combination of unstructured and structured text sources. This acquisition method significantly improves coverage compared to a previous set of labeled classes and instances derived from free text, while achieving comparable precision.
منابع مشابه
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic fun...
متن کاملClassification in Graphs using Discriminative Random Walks
This paper describes a novel technique, called D-walks, to tackle semi-supervised classification problems in large graphs. We introduce here a betweenness measure based on passage times during random walks of bounded lengths in the input graph. The class of unlabeled nodes is predicted by maximizing the betweenness with labeled nodes. This approach can deal with directed or undirected graphs wi...
متن کاملSemi-supervised Classification from Discriminative Random Walks
This paper describes a novel technique, called D-walks, to tackle semi-supervised classification problems in large graphs. We introduce here a betweenness measure based on passage times during random walks of bounded lengths. Such walks are further constrained to start and end in nodes within the same class, defining a distinct betweenness for each class. Unlabeled nodes are classified accordin...
متن کاملOutclassing Wikipedia in Open-Domain Information Extraction: Weakly-Supervised Acquisition of Attributes over Conceptual Hierarchies
A set of labeled classes of instances is extracted from text and linked into an existing conceptual hierarchy. Besides a significant increase in the coverage of the class labels assigned to individual instances, the resulting resource of labeled classes is more effective than similar data derived from the manually-created Wikipedia, in the task of attribute extraction over conceptual hierarchies.
متن کاملMaximum Consistency Preferential Random Walks
Random walk plays a significant role in computer science. The popular PageRank algorithm uses random walk. Personalized random walks force random walk to “personalized views” of the graph according to users’ preferences. In this paper, we show the close relations between different preferential random walks and label propagation methods used in semi-supervised learning. We further present a maxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008